ASSOCIATION FOR THE ADVANCEMENT OF ALTERNATIVES ASSESSMENT

International Symposium on Alternatives Assessment Virtual 2020

Current Practices and Future Prospects

October 27-29, 2020

Thank You Sponsors

State of Oregon Department of Environmental Quality

National Institute of Environmental Health Sciences

Session Etiquette

- Please keep your lines muted and your videos off.
- Please make sure your **full name and organization** are noted. You can change your name by clicking on the ... next to your name/image.
- Use "**speaker view**" in Zoom it will offer the best viewing experience.
- During the Q&A portion of the session, if you wish to ask a question or offer a comment, please raise your hand
 - Feel free to unmute your line and turn on your video so engage more voices/faces in the conversation.
 - Also feel free to use the chat.
- This session is NOT being recorded.

Raising your hand in Zoom

Unmute Start Video	Participants Chat Share Screen	Record
	-	- 🗆 ×
	 Participants (2) 	
	yanoverfieldshaw (Me)	<i>₩</i> 1211
	RG Room G-207 (Host)	<i>₩</i> 🕞
	👎 📥 👋	₽ 0
		>>
	Raise Hand yes no go slower go	o faster more

- To "raise you hand"
 - first open the participants icon on the bottom of your computer screen
 - When the participants view opens, you'll find the "raise hand" icon in the icon list at the bottom.
 - Help us by lowering your hand (toggle the icon) when you finished with your question/comment
- The chat will work too

Symposium Session 6

Part II: Considering Trade-offs: Real-world strategies to make decisions

Questions? Comments?

- What do you do to address trade-offs in your assessments?
- What are the lessons would you pass on to this community?
- Is our alternatives assessment practice coalescing around specific strategies to navigate trade-offs in decisions about alternatives?
 - Should it?

Moderator & Panelists

MOLLY JACOBS

University of Massachusetts Lowell

HEATHER MCKENNEY The Honest Co.

MATTEO KAUSCH

Cradle to Cradle Products Innovation Institute

MALLORY MCMAHON

The Honest Co.

TOM LEWANDOWSKI Gradient

MARTIN WOLF Seventh Generation

International Symposium on Alternatives Assessment - Virtual 2020

Decision Making Considering Trade Offs

29 October 2020

Outline

- Introduction to Seventh Generation
- Sustainable Product Design
- Product Standards
- The Problem
- The Decision
- Q&A and Discussion

Sustainable Product Design

Products should be at the center of serving the environment and human health *without* compromising efficacy or an accessible price point. © 2020 Seventh Generation

Environmental Formulation Principles

Product Attributes

- Bio-based
- Biodegradable Ingredients
- Fragrances only from essential oils and botanical extracts
- Low Aquatic Toxicity

- No Volatile Organic Compounds (VOCs)[#]
- No Phosphates
- No Boric Acid

USDA

Biobased:

95%*

- No Chlorine
- No Optical Brighteners
- Non-animal ingredients

USDA Biobased: 97%*

USDA

Biobased:

97%*

*US Data; ASTM D6866 radiocarbon dating

© 2020 Seventh Generation

#excluding fragrances

Human Health Formulation Principles

Manage Chronic Toxicity Through Tiered Risk Assessment

- Avoid Chronic Toxicants
 - Not Carcinogenic
 - Not Mutagenic
 - Not Neurotoxic
 - Not Reprotoxic
 - Not Endocrine Disrupting
 - No Strong Sensitizers
 - Fragrance Sensitizers disclosed on package
- Manage Acute Toxicity Through Formulation
 - Not Acutely Toxic
 - Not Irritating (dermal)
 - Not irritating (ocular)

Safer Choice

The Problem

Why Antimicrobial Preservatives?

- Home care products can support microbial growth
 - Water
 - Organic matter (food)
- Microbial growth can degrade product performance and aesthetics
- Antimicrobials can:
 - Lower manufacturing costs
 - Extend shelf life
 - Counteract contamination during use

Benzisothiazolinone

- antibacterial
- antifungal
- stable above pH 7
- FIFRA registered
- Safer Choice listed
- Not "black listed"

Became unavailable due to fire at a factory manufacturing an intermediate chemical (2018).

Strategies for BIT Replacement

Short-term strategies

- Drop-in replacement
 - Safer Choice SCIL list
 - MIT

 - Add OIT

Long-term strategies

- Reformulate
 - Eliminate isothiazolinones
 - Organic acid antimicrobials
 - Citric acid
 - Lactic acid
 - Sodium benzoate
 - Important to maintain product performance!
 - Important to maintain biobased content

Level of Effort

- Tested over 200 combinations of products and antimicrobial preservatives
 - Each test take 4 weeks for a "first read"
 - Each test takes 12 weeks to complete
- BIT effective at low ppm levels
- Organic acids require 0.5-1% levels

The Problem

• For low solids products (such as window and surface cleaners) use of organic acid preservatives reduced the biobased content below our minimum acceptable level

The Trade-off

Decision to continue to use isothiazolinone rather than reduce biobased content

Questions, Discussion Thank you!

martin.wolf@seventhgeneration.com

GRADIENT

Case Examples of Decision Making in Alternatives Assessment

Tom Lewandowski, Ph.D., DABT, ERT, ATS A4 Virtual Symposium •October 29, 2020

Case Example: Purely Qualitative/Narrative Comparison

Comr	non Chemical Name	Performance	Hazard	Availability	<u>Comparative</u> Exposure	Comparative Cost Per Ton	Conclusion	
Compounds of Concern	Methyl isothiazolinone	Demonstrated use	Skin sensitizer, not reprotoxic, aquatic toxicity	Readily available	Evicting chomicals	Evicting chomicals	Compares fairly	
Compo Con	Methyl chloro isothiazolinone	Demonstrated use	Skin sensitizer, not reprotoxic, aquatic toxicity	Readily available	Existing chemicals	Existing chemicals	favorably with possible alternatives	
	Antimicrobial 1	Used in leather process, ability to replace isothiazolones uncertain	Possible skin sensitizer, mutagenic, Prop65 repro hazard, aquatic toxicity	Readily available	Less volatile, more hydrophilic	Less	Possible, Prop65 listing is a concern	
Possible Alternatives	Antimicrobial 2	Used in leather process, ability to replace isothiazolones uncertain	Possible skin sensitizer, mutagenic, Prop65 repro hazard, aquatic toxicity	Readily available	Less volatile, more hydrophilic	Similar	Possible, Prop65 listing is a concern	Simple - summ staten
	Antimicrobial 3	Used in textile processing, replacing isothiazolones in some consumer products	Not sensitizing, repro at high concentrations (>300 mg/kg), lowest aquatic toxicity	Readily available	Similar volatility, more hydrophobic	Similar	Explore further	
	Antimicrobial 4	Marketed for use in leather process, ability to replace isothiazolones unknown	Not sensitizing, repro at high concentrations, endocrine active, aquatic toxicity	Readily available	Less volatile, more hydrophobic	Substantially Higher	Higher hazard, higher cost, probably non-viable	

Case Example: Mostly Qualitative/Narrative Comparison

Product		Hazard			Relative Exposure		
Group	Description -	Human Health	Ecological	Physical/ Chemical	Performance	Potential	Conclusions of Preliminary AA
1	Priority Product (>60% DCM)	Base Case (200)	Base Case (100)	Base Case (85)	Base Case	Base Case	
2	Priority Product (<45% DCM)	Higher (265)	Similar (100)	Higher (125)	Somewhat less effective	Similar	These products would not be good substitutes for the priority product as the hazards are similar or higher, the exposure potential is similar, and the performance is somewhat reduced. Overall, not good candidates to carry over to Stage 2.
3	Acetone/Toluene/ Methanol	Lower (145)	Substantially lower (25)	Higher (150)	Clearly less effective in most cases	Similar	These products would not be good substitutes for the priority product in terms of physical hazard, although the health hazard is reduced. The exposure potential is similar, but performance is clearly inferior to priority products. Overall, not good candidates to carry over to Stage 2.
4	Dibasic esters	Substantially lower (75)	Substantially lower (45)	Substantially lower (0)	Clearly much less effective	Lower <i>via</i> air, similar to other pathways	Despite good hazard scores and reduced exposure potential for some pathways, inferior performance of these products leads to dropping this group from further considerations.
5	Benzyl alcohol	Substantially lower (20)	Substantially lower (0)	Similar (50)	Variable and difficult to reconcile results, due to test differences. Equivalent to clearly inferior performance.	Lower <i>via</i> air, similar to other pathways	Hazard scores are substantially lower than the priority product, and there is an indication or reduced exposure potential. However, performance is reported to be highly inconsistent, with some studies showing similar performance to the priority product and others showing very poor performance. Consider carrying to Stage 2 if the performance discrepancies can be resolved.
6	Caustics	Substantially lower (30)	Substantially lower (15)	Substantially lower (0)	Clearly much less effective although data are limited	Lower via air, potentially greater via water, similar for soil/sediment	Despite good hazard scores and reduced exposure potential for some pathways performance studies, leads to dropping this group from further considerations.
7	Other	Varies (110-225)	Substantially lower (0)	Varies (50-150)	No reliable data to evaluate performance	Lower <i>via</i> air, similar to other pathways	Hazard score is variable across the category, and exposure potential may be better for some products, but the absence of data to determine whether the products work leads to dropping this group from further consideration.
8	Lowell Formulation	Lower (110 or 185)	Substantially lower (10)	Higher (150)	Similar/slightly inferior performance depending on paint type for close formulation. No data on actual formulation.	Lower <i>via</i> air, similar to other pathways	There is reduced human health and ecological hazard relative to the priority product. Increased flammability could be a trade off, but this should be exploded (<i>e.g.</i> , the impacts of additives that reduce vapor pressure). Performance for similar products is nearly as good, but performance data on the current formulation are needed.

Case Example: Quantitative Comparison of Alternatives

- AA of alternative flame retardants for foam products
- Private business group, not done for any regulatory purpose
- Used sequential and simultaneous decision frameworks (IC2 AA Guide)
 - Sequential = sequentially screen for different modules (*e.g.*, hazard, performance) and eliminate alternatives that aren't better than current product
 - Simultaneous = evaluate all modules together, weighting according to importance
- Explored different weightings for simultaneous framework

IC2 Module Scoring

- Classified/binned current product and each alternative for the following modules
 - Performance
 - Hazard
 - Availability
 - Exposure
 - Cost
- 3 to 5 bins per module, average bin number became the module score (higher is better)
 - Some binning was arbitrary due to lack of guidance

Example: Exposure Scoring

Class/Bin	Log Kow	Vapor Pressure	Water Solubility	-		Current Chemical	Alternative 1
		(mm Hg at 25C)	(mg/L at 25C)	(days)	Log Kow	Class 2 = 2 points	Class 2 = 2 points
Class 1	>5	>0.01	>10,000	>180	Vapor Pressure	Class 3 = 3	Class 3 = 3
Class 2	0 to 5	0.01 to 10-6	100 to 10,000	60-180	Water Solubility	Class 2 = 2	Class 4 = 4
Class 3	-5 to 0	10-6 to 10-10	1 to 100	16-60	Env. Half-life	Class 2 = 2	Class 4 = 4
Class 4	<-5	<10-10	<1	<16	Total score	Avg = 2.3	Avg = 3.3

Decision Frameworks

- Sequential framework
 - Performance, hazard, exposure, availability, cost
 - Worse module score than current chemical = rejected •
- Simultaneous framework
 - Used 4 weighting approaches •

Module	Equal Weights	Weight Variant 1	Weight Variant 2	Weight Variant 3				
Performance	0.2	0.15	0.15	0.4				
Hazard	0.2	0.45	0.25	0.4				
Exposure	0.2	0.26	0.25	NA				
Cost	0.2	0.14	0.15	0.2				
Availability	0.2	NA	0.2	NA				
Based on Malloy et al. 2013 Copyright Gradient 2020 Copyright Gradient 2020								

Results of Sequential and Simultaneous Approaches

	Sequential Framework	Simultaneous Framework								
Alternative		Performance Score	Availability Score	Hazard Score	Exposure Score	Cost Score	Weighted Score 1	Weighted Score 2	Weighted Score 3	
Current Chemical		0	4	2.3	2	2.3	2.5			
Alternative 1		0	4	3.2	3.3	2	2.6	2.7	1.7	
Alternative 2		Sequenti	al frameworl	k missed	3.3	3	2.9	3.0	2.0	
Alternative 3		•	al framework missed ernatives that the2.5			2	2.9	2.6	2.1	
Alternative 4				ous framework		1	0.1	0.4	0.2	
Alternative 5		suggeste	d may be wo	rthwhile	0.0	1	2.0	1.2	1.9	
Alternative 6		3	2	2.6	2.2	1	2.3	2.2	2.4	
Alternative 7		0	4	4.2	1.7	3	2.7	2.7	2.3	
Alternative 8	V	3	2				3.2	2.8	3.1	
Alternative 9		0	3		scoring scho ake much o		2.8	2.6	1.7	
Alternative 11		0	3		e in outcon		1.0	2.11	1.0	
Alternative 12	V	5	4	top choic			3.3	3.4	3.8	
Alternative 13	\checkmark	3	4	3.48	2.79	2	3.0	3.1	3.0	

Notes: Score 1 = Hazard \times 45% + Exposure \times 26% + Performance \times 15% + Cost \times 14%.

Score 2 = Hazard \times 25% + Exposure \times 25% + Performance \times 15% + Availability \times 25% + Cost \times 15%.

Score 3 = Hazard \times 40% + Performance \times 40% + Cost \times 20%.

Using the C2C Certified Material Health Assessment Methodology to evaluate tradeoffs in hazard profiles and exposure routes: TiO₂ case study

Matteo Kausch, PhD Cradle to Cradle Products Innovation Institute

INSTITUTE AND PROGRAM HISTORY

CRADLE TO CRADLE CERTIFIED™

Ensure materials are safe for humans and the environment

Chemicals and materials used in the product are selected to prioritize the protection of human health and the environment, generating a positive impact on the quality of materials available for future use and cycling.

MATERIAL HEALTH FOCUS AREAS

MATERIAL HEALTH ASSESSMENT METHODOLOGY OVERVIEW

<u>Goal</u>: Assign an A - ideal, B - preferred, C - acceptable, X- significant risks or GREY - insufficient data rating to each homogeneous material subject to review in the product using the following 3 steps:

- 1) Conduct chemical hazard assessment
- 2) Conduct exposure assessment & assign chemical risk ratings
- 3) Assign material assessment rating
BACKGROUND

- Carbon black, TiO₂, and crystalline silica are substances used in a large variety of articles and formulated products
- Commonly recognized as hazardous and listed on numerous authoritative lists; however, hazards are specific to the route of inhalation and may thus not be relevant in many applications
- HPDC was looking to develop special conditions for these three initially and potentially additional substances meeting the same requirements in the future
- Goal: Establish under which conditions TiO₂, carbon black, and crystalline silica are considered 'acceptable' according to the C2C Certified MHAM (in support of special condition).

- Most common, naturally occurring form of titanium
- Very common pigment (estimated to be 2/3 of all pigments)
- Applications include: paint, sunscreen, and food coloring
- Crystalline (rutile structure most common): continuous network of tetragonal unit cells with each Ti⁴⁺ surrounded by 6 O²⁻ (and each O²⁻ by 3 Ti⁴⁺)
- Suspected Carcinogen (EU Cat. 2)

HAZARD ASSESSMENT

RED (significant hazard), YELLOW (borderline hazard), GREEN (no hazard), or GREY (data gap) - hazard rating

assigned to each endpoint

Human Health

Carcinogenicity	Mutagenicity
Reproductive & Developmental Toxicity	Skin, Eye, and Respiratory Corrosion/Irritation
Neurotoxicity	Endocrine Disruption
Oral Toxicity	Dermal Toxicity
Inhalation Toxicity	Sensitization of Skin and Airways
Other	

Environmental Health

Fish Toxicity	Daphnia Toxicity
Algae Toxicity	Bioaccumulation
Persistence	Terrestrial Toxicity
Climatic Relevance	Other

Chemical Class

Organohalogens	Toxic Metals
----------------	--------------

HAZARD ASSESSMENT

RED (significant hazard), YELLOW (borderline hazard), GREEN (no hazard), or GREY (data gap) - hazard rating

assigned to each endpoint

Human H	lealth			Environmental Health								
Carcinogenicit	tv	Mutagenicity		Fish Toxicity Daphnia								
Reproductiv Developmer	Strategy 1: Comparative evaluation " matrices used in every C2C Certified											
Oral Toxicity												
Inhalation T	asses	sment.										
		Airways	_	Chemical Class								
Other												

Hum	Human Health												
	С	М	R&D	E	0	D		1	N	S	C/Irr		
ODI	R	G	G	Y	G	G		Y	-	G	G		
Envir	onmenta	al					Other						
Inv	Fish	Alg	Ρ	В	С	т		OX	т	Me	ο		
G	G	-		G	G	-		G		G	G		

Huma	Human Health												
	С	м	R&D	E	ο		D	I	N	S	C/Irr		
ODI	Stra eval	tegy luatio	2: Rul on of d	G	Y	-	G	G					
Enviro	onmenta	al						Oth	ner				
Inv	Fish	Alg	Ρ	В	С	1	r	O	K	ТМе	0		
G	G	-		G	G	•		G		G	G		

CAS #: 13463-67-7

Hum	Human Health												
	С	М	R&D	E	0	D	I	Ν	S	C/Irr			
ODI	R	G	G	Y	G	G	Y		G	G			
Envir	onmenta	al			Other								
Inv	Fish	Alg	Ρ	В	С	т	C	X	TMe	ο			
G	G	-		G	G			G	G	G			

Hum	Human Health												
 P, B, and aquatic toxicity (AT) endpoints are rolled into a 'combined AT risk flag' according to the MHAM. Unless there are red hazards or data gaps in at least one other endpoint of the group, P rating is irrelevant. 													
Inv	Fis	sh	Alg	Ρ	2	с	т		ОХ	TMe	ο		
G	G				G	G			G	G	G		

Hum	Human Health													
	С	М	R&D	E	0	D	I	I	N S	C/Irr				
ODI	R	G	G	Y	G	G	Y		G	G				
Envir	onmenta	al		Other										
Inv	Fish	Alg	Ρ	В	С	т		ΟΧ	TMe	ο				
G	G		n/a	G	G			G	G	G				

CAS #: 13463-67-7

Look at exposure route sub-endpoints: only hazards related to inhalation of dust form, 'yellow' risk if in bulk form/ embedded in matrix (C2C Certified Exposure Methodology).

Other		
ОХ	TMe	ο
G	G	G

Hum	Human Health												
	С	М	R&D	E	0	D	I	N	S	C/Irr			
ODI	R	G	G	Y	G	G	Y		G	G			
Envir	onmenta	al					Other						
Inv	Fish	Alg	Ρ	В	С	т	O	x	ТМе	ο			
G	G		n/a	G	G		G		G				

Conclusion:

 Based on hazard profile and following the C2C Certified MHAM, and Exposure Methodology, this substance is 'c' assessed (i.e. 'acceptable') when embedded in a material matrix (i.e. non-inhalable). It is 'x' assessed (i.e. 'problematic') in inhalable form.

LESSONS FOR PRACTITIONERS

- Endpoint specific considerations (physical parameters, etc.) around data availability can improve treatment of data gaps (what data is reasonable to require?)
- Looking at hazards by exposure route and taxon (for aquatic toxicity) will lead to more representative conclusions (are we ignoring data gaps because they do not fall under a traditional endpoint?)
- Exposure considerations can fundamentally change chemical prioritization for specific product applications (are identified hazards relevant given the product/material context?)
- The C2C Certified Material Health Assessment Methodology offers a structured framework for considering these tradeoff and making informed decisions.

THANK YOU!

c2ccertified.org

Closing Thoughts

Welcome to the Association for the Advancement of Alternatives Assessment (A4)

Advancing the science, practice, and policy of alternatives assessment and informed substitution

A4 welcomes you to this week's International Symposium!

Watch this short video and help us celebrate the faces, places and events that have shaped A4's growing community.

Assessment - Virtual 2020

Thank You Sponsors

State of Oregon Department of Environmental Quality

National Institute of Environmental Health Sciences

Thank You A4 Officers and Executive Executive Director

Joel Tickner President

Pam Spencer

A4's Executive Council

Lauren Heine, ChemFORWARD [A4's Vice President] Jennifer Tanir, ToxServices LLC [A4's Secretary/Treasurer] Topher Buck, Safer Consumer Products Branch, California Department of Toxic Substances Control Elaine Cohen Hubal, U.S. Environmental Protection Agency Peter Fantke, Technical University of Denmark, Division for Quantitative Sustainability Assessment Art Fong, Apple Shari Franjevic, BizNGO, Clean Production Action Molly Jacobs, University of Massachusetts Lowell, Lowell Center for Sustainable Production Tim Malloy, University of California Los Angeles, Sustainable Technology Policy Program, School of Law & School of Public Health Karl Palmer, Safer Consumer Products Branch, California Department of Toxic Substances Control Cathy Rudisill, SRC, Inc. Jessica Schifano, U.S. Department of Labor, Occupational Safety and Health Administration Robert Skoglund, Covestro LLC Rachel Simon, University of Massachusetts Lowell, Lowell Center for Sustainable Production Libby Sommer, Bolt Threads Margaret Whittaker, ToxServices LLC Martin Wolf, Seventh Generation

Thank you to our A4 Program Committee

Friday: NURA Short Course

New Approach Methodology Use for Regulatory Application (NURA) – Part 2

To register for Friday's Part 2 session, please visit: http://saferalternatives.org/2020-virtual-symposium/short-course-nura

To access presentations for Parts 1 and 2, please visit: https://pcrm.widencollective.com/portals/nteaew1t/NURAA4

ASSOCIATION FOR THE ADVANCEMENT OF ALTERNATIVES ASSESSMENT

"One of the most essential, and powerful steps to change is understanding that there are alternatives" -Mary O'Brien 2000

Join Us!

- A4 is dedicated to advancing the science, practice, and policy of alternatives assessment and informed substitution.
 - The **vision** of A4 is that every essential function performed by a chemical, material, process, or product is achieved with safe and sustainable solutions
 - The **mission** of A4 is to enhance the science of alternatives assessment, advance informed substitution, and support a vibrant, effective community of practitioners
- Learn from state of the science webinars, Network with the world's leading AA practitioners
- Join the A4 at:

https://www.saferalternatives.org/membership/