

2nd International Symposium on Alternatives Assessment 1 - 2 November 2018 - Sacramento CA USA

Implementation of Quantitative Hazard Assessment Scoring Methods for High-throughput Chemical Alternatives Assessment

Beattie, P.J.; McLoughlin, C.; Rinkevich, J.P. (Scivera LLC); Horspool, K; Hackenmiller-Paradis, R (Nike); Echols, S (ZDHC); and Gallegos, L. (LS&Co)

LEVI STRAUSS & CO. ØZDHC Scivera

Topics

Chemical screening is changing
 Qualitative frameworks are helpful
 Quantitative approaches compliment
 Brands are collaborating for scale

GOAL: Understand through examples how quantitative hazard scoring is leading to rapid expansion of alternatives assessment and preferred chemicals selection for consumer products.

Multiple nonregulatory drivers of safer chemicals action

- NGOs
- Consumers
- Leadership

Multiple nonregulatory drivers of safer chemicals action

- NGOs
- Consumers
- Leadership

About ~ Representing Consumers ~ Members ~ Public

me > Articles > News > Beware toxic chemicals in imported clothing

20 June , 2012

Beware toxic chemicals in imported clothing

CHOICE says Australia lags behind overseas regulation

CHOICE says that inadequate chemical regulation for imported textiles, clothing and footwear means that consumers are unaware that they could be wearing toxic chemicals.

In a report into chemicals in textiles, clothing and footwear (TCF), the people's watchdog says Australian chemical regulation lags behind other countries. As a result, Australians are exposed to higher risks of allergic reactions to chemicals in new clothes, footwear and even furniture.

"Over ninety percent of the clothes on Australian shelves are imported. The trend for 'fast fashion' also means that retailers are under pressure to put more stock on shelves, more often," says CHOICE spokesperson, Ingrid Just.

"That pressure, combined with our inadequate chemical regulation for apparel, means that consumers have less protection than people in other countries where regulation is stronger."

Multiple nonregulatory drivers of safer chemicals action

- NGOs
- Consumers
- Leadership

Qualitative chemical screening

US EPA Safer Choice® Program
 UN GHS System
 GreenScreen® for Safer Chemicals
 Cradle to Cradle® Certification
 Bluesign® Certification
 Scivera GHS+ Hazard Assessment

"I just need a number."

Quantitative chemical screening

- Compliment qualitative frameworks
 Result in a numeric score
- 3. Enable easier comparative review of chemicals and formulations

Quantitative screening examples

Screened Chemistry
 NIKE Priority Chemistry
 Scivera Quantitative Chemistry Index

Ingredient score

Benchmark 4Rapid Screen Hazard Category Green50 pointsBenchmark 3Rapid Screen Hazard Category Yellow/Green40 points	
Benchmark 3Rapid Screen Hazard Category Yellow/Green40 points	16
Full Green 35 points	
Benchmark 2 Rapid Screen Hazard Category Yellow Yellow Triangle 20 points	
Benchmark U Rapid Screen Hazard 15 points	
Benchmark 1 / LT-1 Rapid Screen Hazard 10 points	

All of the second	Sec. 1 No. 1 DOM:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Include
-orm		nec	
STATISTICS IN CONTRACTOR	A REAL PROPERTY OF A REAL PROPER	100 March 100 Ma	1- 1- A-8-3

Chemical Formulation	%	Hazard Ingredient Rating	Points	Total
CASNR Ingredient #1	5	EPA Yellow Triangle	10	0.5
CASNR Ingredient #2	10	EPA Acceptable	30	3
CASNR Ingredient #3	15	EPA Full Green Circle	35	5.25
CASNR Ingredient #4	20	BM3	40	8
CASNR Ingredient #5	50	BM2	20	10
Formulation Score: No		26 75		

Formulation Score	Rating	Definition
35 to 50	Green	Preferred Chemical
20 to 34	Yellow	Needs Improvement
19 to -50	Red	Phase Out

* Formulations with BM1/LT-1/HC Red ingredient automatically score below 20 for target Phase out

		A STATISTICS.	and the second	- TO SEA AND
	Formulation Tradename	Supplier	Chemical Function	Score
ed Chemical List:	Softener 1	Supplier A	Softener	26
	Softener 2	Supplier B	Softener	30
	Softener 3	Supplier C	Softener	35
	Softener 4	Supplier D	Softener	40
	Softener 5	Supplier E	Softener	16
	and and	and the second second		

Prefer

Benefits of Formulation Scores

- Vendors are able to select chemicals based on their hazard score and not just M/RSL conformance, cost and performance – allowing them to go beyond compliance
- Scores allow suppliers and developers to select better/best alternatives and compare ingredients and formulations
- Identifies R&D opportunities with suppliers and allows hazards to be screened out in the design stage before entering into the supply chain
- Creates a Preferred Chemical List vs a Negative Restricted List

🧑 sciv	/eralet/ rapi	NS d screen								Assessment re Formulation Exar	nple
Details	Nike										
ROW		CASRN	COMMON NAME	Q.	Nice A	NRSI.	RSL.	нс	DS	NCR	NPS
		Formulation Example		100'0	A	A	A	•	•	•	-6.8
1		redacted	redacted	20.0	A	A	A	•	•	•	20
5		redacted	redacted	0.5	A	A	A	•	•	•	20
6		redacted	redacted	0.5	A	A	A	•	•	•	20
7		redacted	redacted	0.5	A	A	A	•	•	•	0
5		redacted	redacted	6.0	A	A	A	•	•	•	0
3		redacted	redacted	10.0	A	A	A	•	•	•	50
4		redacted	redacted	5.0	A	A	A	•	•	•	90
2		redacted	redacted	5.0	A	A	A	•	•	•	35
10		reducted	redacted	5.0	A	A	A	•	•	•	10
11		redacted	redacted	5.0	A	A	A	•	•	•	10
э		reducted	redacted	2.5	A	A	A	•	•	•	-10
12		reducted	redacted	40.0	A	A	A	•	•	•	-50

• •

Nik		nulation S	core					
SCIVERALENS	rapid screen	HI -					Assess Formulation	ment results Example
Details by Nike			NRSI	-		05	400 MIR	RFS
								E Start
ROW	CASRN	COMMON NAME			-			6.8 20
					•			20
			2		1000	•		20
	Formulation Exam	iple		*	•			0
1	redacted	redacted	-	and an	- Cont	-	and the second	0
			1				0.00°	90
5	redacted	redacted		A	•	•	•	90
			and the	A	•	•		39
6	redacted	redacted	Asset		•	•	•	10
						and the same	-	10
	redacted	redacted	4					10
	redacted	redacted						

	Nike	Form		a a com				
sci	Veralens						Asses	sment results
Details	rapid screen	12317	Nike	MRSL	RSL	нс	Formulatio	n Example
RU14	CASER	POM UNIV MAME		A		• 1		- KPS
	Formulation Examp	ple					•	38
-1	recasted	redacted	-	•	•	-	• 2	20
5	recarted	reduction				•	•	20 - 20
6	recacted	restacted	_	_	_	-	•	20
1	recacted	rodacted				•		0
5	recacted	reducted						D
3	recacted	redacted				• /		50
4	recacted	redacted				•	•	90
2	restanted	reductor				•		35
10	recasted	reducted				• •		10
ш	recarted	reducted				•	•	- 10- T
9	recarted	redacted				•		10
12	recacted	reducted	Ann				•	50
						THE PROPERTY		

civero	ILENS			CII/ana			
Nike	Taplo screen						
	CASRN	COMMON NAME	9	N los	нс	DS	NCR
	Formulation Bramp	sle	100.0				
	reclacted	reducted	20.0	•		•	•
	recacted	redacted	0.5		-	-	-
	recacted	redacted	0.5		•		•
	recacted	redacted	0.5				
	redacted	reducted	6.0		•		•
	reclacted	redacted	10.0	A			
	reclacted	redacted	5.0		•		•
	redacted	reducted	5.0	A			
	reclacted	reducted	5.0	A	-		•
	reclacted	redacted	5.0				
	reclatted	redacted	2.5	A	4		
	reclacted	reducted	40.0	A	4		

A Company

Terre

R.

Innovation and Scoring

efore Formulation Scoring:

- Chemical Supplier provides formulation as part of innovation project Nike Chem team reviews
 - Determines formulation does not meet standards
- Supplier alters formulation but doesn't know what is exactly wanted
 - New Formulation is also rejected
- Repeat as needed.

With Formulation Scoring:

- Chemical Supplier able to see score, identify specific ingredient impacts, alter formulations to improve score
- Nike Chem team reviews
 - Approves formulation
- New product moves to market quickly and is a huge success!
- Supplier is happy, Innovation teams are happy, everyone is happy.

Scivera Quantitative Chemistry Index ("QCI")

- 1. Calculates a 0-100 score for a chemical
- 2. Based on comprehensive hazard assessment results
- 3. Useful for comparing alternative ingredients within qualitative category
- 4. Valuable for scale, consistency, and dynamic nature of assessments

Scivera Quantitative Chemistry Index ("QCI")

Hazard Condition	Base Score	Core Endpoint Factor (0.67/1.5)	Limited Evidence Factor (0.75) Base	Limited Evidence Factor (0.75) Core
Low (I)	11	16.5	8.25	12.375
Moderate (m)	8	12	6	9
High (h)	3	2	2.25	1.5
Very high (vh)	1.5	1	1.125	0.75
Unassessed (u)	1.125	0.75	-	-
Assessed - Data Gap (nd)	1.5	1	-	ā

NB: Core Endpoints: CMRD/PBT Limited evidence: Modeled data, etc.

CASRN	Common Name	: F	IC 6I	с	м	R	D	ea	atd	ato	ati	st	n	ds	rs	di	ei	в	AAT	CAT	Р	r	f	etp	ар	si
		1	a a a a																							
980-26-7	5,12-dihydro	11	71	•	٠	•	•	•	٠	٠	•	٠	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•
98-56-6	4-chloro-a,a	11	55	•	٠	•	٠		٠	٠	٠	٠		•		٠	٠	٠	•	•	٠					
97-90-5	ethylene dim	1.1	62	•	٠	•	•		٠	٠	٠	•		•	•	•	٠	•	•	•	•					
97-88-1	butyl methac	1.1	74	•	٠	٠	٠		•	•	٠	•	•	•		•	٠	٠	•	•	•		•		•	
97-86-9	isobutyl met	1.1	60	•	٠	•	•		٠	٠	٠	•		٠	•	•	•	•	٠	•	•				•	
97-85-8	isobutyl iso	11	58	•	٠	•	•		•	•	•							•			•		•		•	•
97-64-3	ethyl lactate	1.1	62	•	•	•	•	•	٠	٠	•	•		•	•	•	٠	•	•	•	•		•			•
96-76-4	2,4-di-tert	11	43	•	•				•	٠		•		٠					•	•	•				•	•
96-48-0	γ-butyrolactone	1.1	76	•	٠	•	•		٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	
96-33-3	methyl acrylate	1.1	52	•			٠		•	•	•	•		•		٠	٠	٠	•	•	•		•		•	•
95-63-6	1,2,4-trimet	1.1	53	•	•	•	•		٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•		•	•
95-47-6	o-xylene	1.1	52	•			•		•	٠	•	•		•		•	٠	•	•	•	•		•		•	
95-14-7	benzotriazole	1.1	65	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
95-13-6	indene	11	45	•	•				•	•	٠	•						٠					•		•	
93-58-3	methyl benzoate	1.1	78	•	٠	•	•		٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
929-06-6	2-(2-aminoet	1.1	73	•	٠	٠	•		٠	٠	٠	•	•	•		٠	٠	•	•	•			•	•	•	
919-30-2	3-aminopropy	1.1	66	•	٠	•	•		٠	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	•		•	
90622-57-4	Alkanes, C9	11	62	•	٠	•	٠		٠	٠	٠	•	•	٠		٠		•		•		•			•	•
90622-56-3	Alkanes, C7	1.1	57	•	۲	•	•	•	٠	٠	٠			•	•	•	•	•	•	•	•	•	•	•	•	•
9043-30-5	Isotridecano	11	50	•	•	•	•		•		•			•			•	•				•			•	•
9016-87-9	Isocyanic ac	1.1	55	•	•	•	•		٠	٠	٠			•	•	•	•	•	•	•	•				•	•
9014-85-1	2,4,7,9-Tetr	11	65	•	٠				•	•	•	٠		٠		•	٠	•	•	•	•			•	•	
9011-14-7	2-Propenoic		60	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•				•	•
9005-65-6	Sorbitan mon	1.1	78	•	٠		٠		•	•	٠	٠		٠		•	٠	•	•	•	٠		٠	•	•	
9004-98-2	(Z)-9-Octade		47	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•				•	•

ZDHC in practice: Evaluating Safer Alternatives

Converging Brand Screened Chemistry Programs

> ZDHC Foundation November 1, 2018

Some challenges are too big to be faced alone

Transforming an industry requires

- Collaboration
- Transparency
- Commitment

OUR VISION is widespread implementation of sustainable chemistry, driving innovations and best practices in the textile, apparel, leather and footwear industries to protect consumers, workers and the environment.

OUR MISSION is to enable brands, retailers and their supply chain partners in the textile, apparel, leather and footwear industries to implement sustainable chemical management best practice across the value chain.

Contact us at roadmap@zdhc.org

Learn more at www.roadmaptozero.com

Ø ZDHC

Summary

- . Engaging 100s of suppliers and 1000s chemical companies
- 2. Establishing objective feedback for safer chemistry achievement
- 3. Expanding to more brands and categories
- 4. Reducing cost, protecting IP, expanding safer alternatives

