
A MULTI-CRITERIA APPROACH TO ALTERNATIVES ASSESSMENT

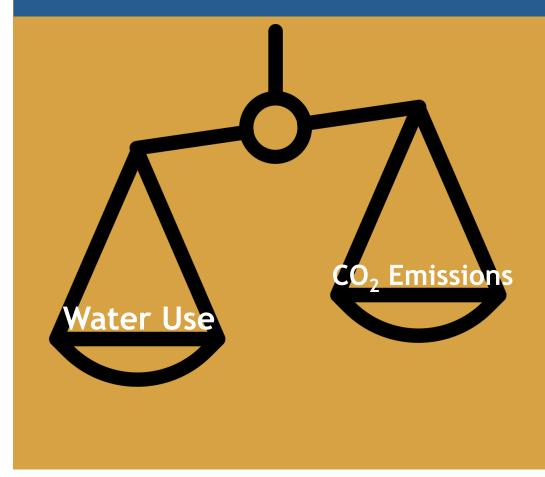
Alternatives Assessment Symposium November 1, 2018

Sharon Dubrow, Steve Risotto ACC Sustainability & Market Outreach

Single Attribute Multi Attribute

One aspect drives decisions

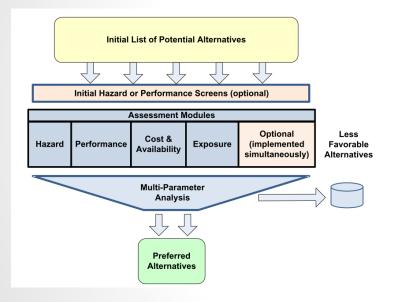
Incomplete view of impacts


> Hazard Energy Use Carbon Footprint

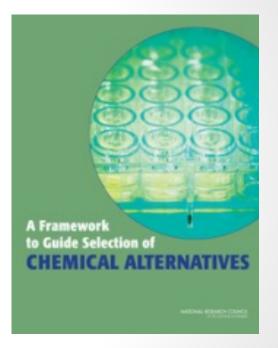
Holistic approach

Comprehensive view of impacts

Human Health Environment Performance Economic Other


The Benefits of a Multi - Attribute Approach

- Select and prioritize decision making criteria
- Understand tradeoffs
- Inform decisions based on user preferences
- Help prevent regrettable substitutions
- Interactive web-based interface


Alternatives Assessments

Multi-Criteria Considerations

IC2 Framework

http://theic2.org/alternatives_assessment_guide

National Academies

https://www.nap.edu/catalog/18872

MCDA Provides Benefits Along the Value Chain

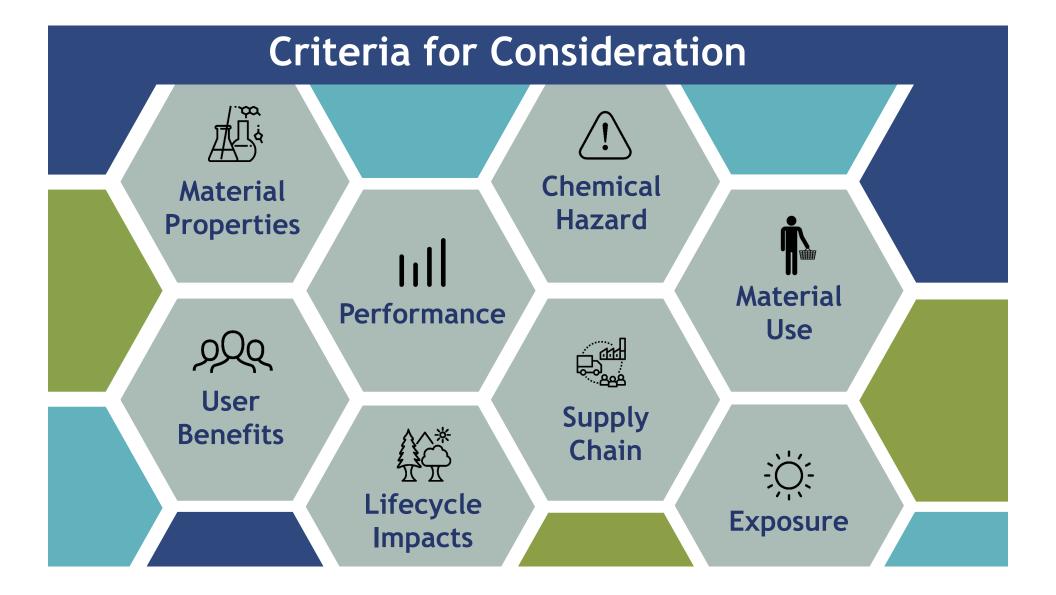
Consumers	Gain knowledge about ingredient function and product safety.
Brands	Inform discussions with Customers. Prioritize chemical-related issues.
Professional s	Offer customers enhanced information related to chemical and product safety.
Retailers	Prioritize chemical-related issues. Support informed decision-making.

Multi-Criteria Decision Analysis

Data Input

Pe	erformance
Alternative A	100%
Alternative B	90%
Alternative C	50%

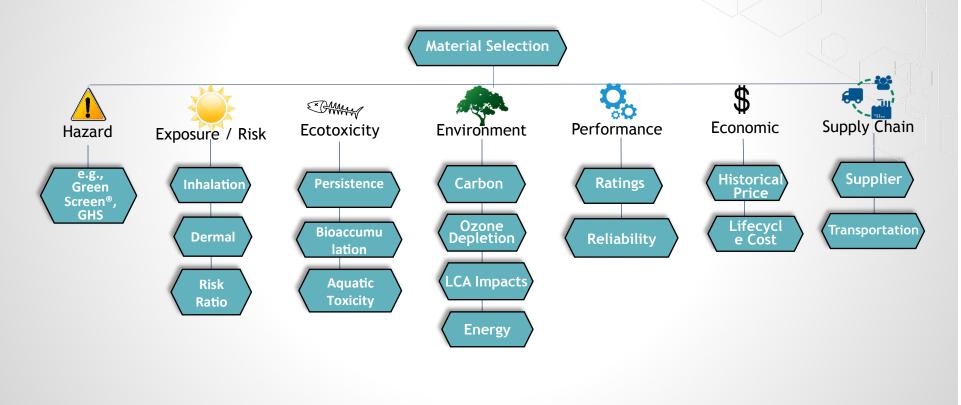
Clin	nate Change
Alternative A	7.55 kg CO ₂ eq / kg
Alternative B	3.57 kg CO ₂ eq / kg
Alternative C	5.56 kg CO ₂ eq / kg


Ozo	ne Depletion
Alternative A	67 mg CFC-11 eq / kg
Alternative B	0
Alternative C	0

User Preferences

Tailored Results

Rankin	gs by Us	er Perspe	ective
Alternative	User 1	User 2	User 3
А	3	3	1
В	1	2	3
С	2	1	2



Master Criteria List

Master Criteria	CA DTSC AA Guide	NAS Framework	REACH (ECHA)	IC2 AA Guide	Umass Lowell AA Framework	U.S. EPA DfE Program	ProScale multi- criteria tool
Human Health Hazard	v	v	v	 ✓ 	 ✓ 	v	 ✓
Exposure Characteristics	~	v	 ✓ 	 ✓ 			 ✓
Eco-toxicity	~	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓
Physical / Chemical Hazards	~	v		v	v	v	v
Performance	~	v	 ✓ 	V	V	v	V
Lifecycle Impacts		v		v	v	v	 ✓
Supply Availability	~			 ✓ 	v		
Legal Considerations	~						
Economic Feasibility	 ✓ 	 ✓ 	 ✓ 		 ✓ 		
Social Justice *Th	nis list is only a su				round criteria. The any given framewo		ence of a check

Alternatives Assessment Structure

Definition: A framework to compare multiple potential solutions in the context of a specific objective.

Demonstration - Marine Boat Paint Study

Washington State Antifouling Boat Paint Alternatives Assessment Report FINAL REPORT October 1, 2017

Multiple Attributes

- Hazard
- Lifecycle Cost
- Performance
- Comparative Exposure

Converting Selection Guide to Data Visualization

																	Perf	ormance											
	Product In	nformation						Hazar	d						Cost									E	xposure	1			
Pi	roduct Iden	itity	General	Human H	lazard		Biocic	le		Enviro	onment	Regu	latory	Initial	/DIY	Cumulative	Assumes manufacturer longevity		Long	gevity		ns to r 100 t²		Bioc	ams ide to 100 ft²	Fa	ite	Grams cover	VOCs to 100 ft ²
Company	Product	Mechanism	Disclosure	Chronic human (CMRDE)	Neuro/Resp	Biocide	Amount	Persistence	Bioaccumulation	PBTaq combos	Puget Sound CoCs	Boatyard CoCs (Zn)	VOC content (g/L)	Per gallon	Per 100 ft ²	35' boat over 5 years	Overall Recommendation	Customer Reviews # reviews, + or -)	Manufacturer Iongevity (years)	# of applications over 5 years	Initial (gallons)	5 year (gallons)	Biocide	Initial (grams)	5 years (grams)	Leach (Y/N)	Ablate (Y/N)	Initial (grams)	5 years (grams)
Coval	Marine and Hull Coat	Foul release, ceramic/ quartz	Full	0%	0%	none	0%	-	-	0%	0%	0%	< 100	\$512.33	\$166.51	\$4034.94	Data Gap		5	1	0.3	0.3	N	0	0	N	N	< 123	< 123
CeRam- Kote	54 SST	Foul release, ceramic	SDS	26% - 53%	0%	none	0%	-	-	0%	0%	0%	< 197	\$125.00	\$125.00	\$3886.75	Data Gap		5	1	1.0	1.0	N	0	0	N	N	< 746	< 746
ePaint	EP-2000	Photoactive and Biocidal, ZnPy	Full	5% - 10%	5% - 5%	ZnPy	4.8%	н	٧L	35% - 45%	29% - 38%	29% - 37%	< 100	\$210.91	\$301.30	\$6977.28	Likely to meet expectations	2 reviews +	3	2	1.4	2.9	Y	259.8	519.7	Y	Y	< 541	< 1083
Sherwin Williams	Sea Voyage	Biocidal, ZnPy and Econea	Full	9% - 9%	37% - 37%	ZnPy/ Econea	6.4%/ 7.35%	н/н	vL/ vL	27% - 27%	32% - 32%	23% - 23%	< 340	\$225.00	\$289.29	\$6891.49	Likely to meet expectations		3	2	1.3	2.6	Y	311.3 / 357.5	622.6 / 715.	Y	Y	< 1654	< 3308
Interlux	Micron CF	Biocidal, ZnPy and Econea	SDS Plus	1% - 16%	9% - 18%	ZnPy/ Econea	4.12% / 3.9%	н/н	vL/ vL	21% - 61%	19% - 47%	9% - 21%	330	\$267.95	\$103.46	\$5564.67	Borderline		3	2	0.4	0.8	Y	60.8 / 57.6	121.6 / 115.2	Y	Y	487	974
ePaint	SN-1	Photoactive and Biocidal, Seanine	Full	11% - 34%	11%- 11%	Seanine	2.9%	L	νĹ	20% - 50%	17% - 41%	16% - 40%	< 400	\$200.00	\$222.22	\$8921.48	Likely to meet expectations		2	3	1.1	3.3	Y	121.9	365.6	Y	Y	< 1681	< 5042
ePaint	ZO	Photoactive and Biocidal, ZnPy	Full	6% - 20%	16% - 16%	ZnPy	4.8%	н	٧L	35% - 50%	32% - 51%	29% - 41%	< 400	\$285.00	\$275.81	\$8912.89	Borderline	1 review +	2	3	1.0	2.9	Y	176.2	528.7	Y	Y	< 1469	< 4406
Pettit	Hydro- coat ECO	Biocidal, ZnPy and Econea	Full	⊲0.5%	11%- 11%	ZnPy/ Econea	4.8%/ 6%	н/н	vL/ vL	9% - 14%	5% - 9%	5% - 9%	< 150	\$268.99	\$125.11	\$7298.93	Likely to NOT meet expectations	2 reviews +	2	3	0.5	1.4	Y	85.4 / 106.7	256.2 / 320.2	Y	Y	< 267	< 801
Pettit	Ultima ECO	Biocidal, ZnPy and Econea	Full	14% - 27%	45% - 49%	ZnPy/ Econea	4.8%/ 6%	н/н	vL/ vL	13% - 23%	16% - 37%	9% - 17%	320	\$249.99	\$149.99	\$7565.39	Likely to NOT meet expectations	2 reviews +	2	3	0.6	1.8	Y	109. / 136.3	327.1 / 408.8	Y	Y	727	2180

Source: NW Green Chemistry Anti-Fouling Paint AA Final Report, Oct 2017

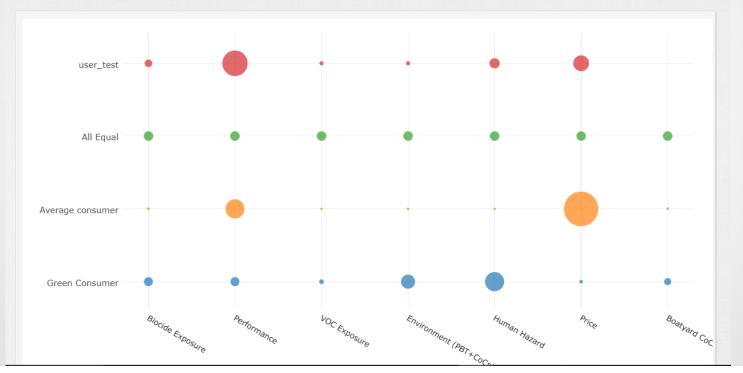
Pairwise Comparisons

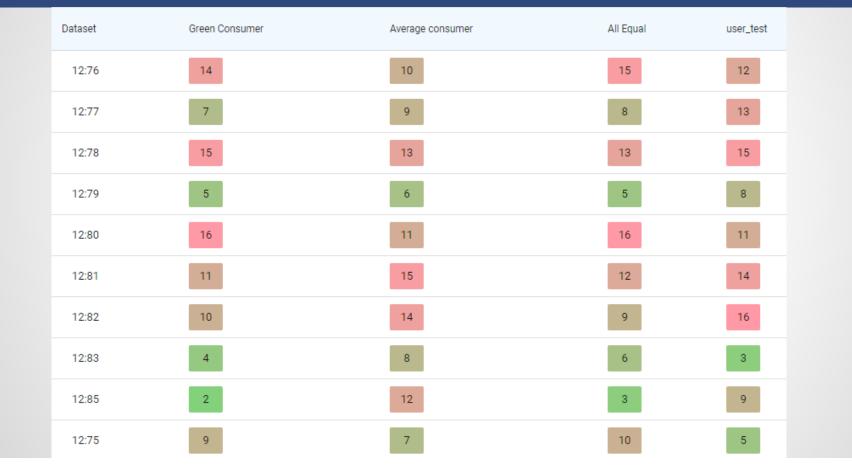
Consumer Preferences

Perf:	11
Climate:	62
Risk:	45
Ozone:	87
Energy:	10
Water:	27
Cost:	5

	More of this Equal weight More of this	
Performance		Price
Performance		Regulatory
Performance		Risk
Performance	————	Climate Change
Performance	• — • — •	Ozone Depletion
Performance		Energy Use
Performance	————	Water Use
Price		Regulatory
Price		Risk
Price		Climate Change
Price	••-	Ozone Depletion

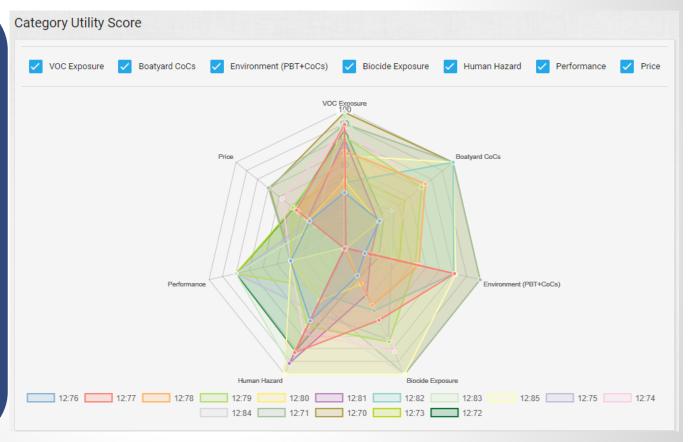
Professional Preferences


Perf:	89
Climate:	12
Risk:	36
Ozone:	23
Energy:	45
Water:	27
Cost:	75


Customizing Weighting Factors

Criteria Weights Edit weights

The weights determine how the different criteria (price, performance, etc.) are combined. A higher weight means more influence of the category. Weights depends on the person's perspective - that's why we show you some example perspectives to start with. To edit them or add your own, click on edit weights.



Results based on User Preference

Assessing Trade-offs

- Offers userfriendly interface
- Provides visualization of comparative results
- Allows testing of "what-if" scenarios
- Can assess impact of selected factors

	Data Sources	
Hazard	Exposure	<u>Economic</u>
Criteria list	Conserver exposure	Criteria list
Boatyard CoCs Biocide Exposure Performance	Pub©hem	TRACI/Ozone depletion TRACI/Respiratory effects
VOC Exposure Environment (PBT+CoCs)	LCA	TRACI/Eutrophication
Human Hazard TRACI/Human health - non-carcinogenic	econvent	TRACI/Resource depletion - fossil fuels TRACI/Photochemical ozone formation CML/Eutrophication - generic
USEtox/Freshwater ecotoxicity USEtox/Human health - carcinogenic USEtox/Human health - non-carcinogenics	USEtox® TRACI USEtox	
		CML/Marine aquatic ecotoxicity - MAETP inf

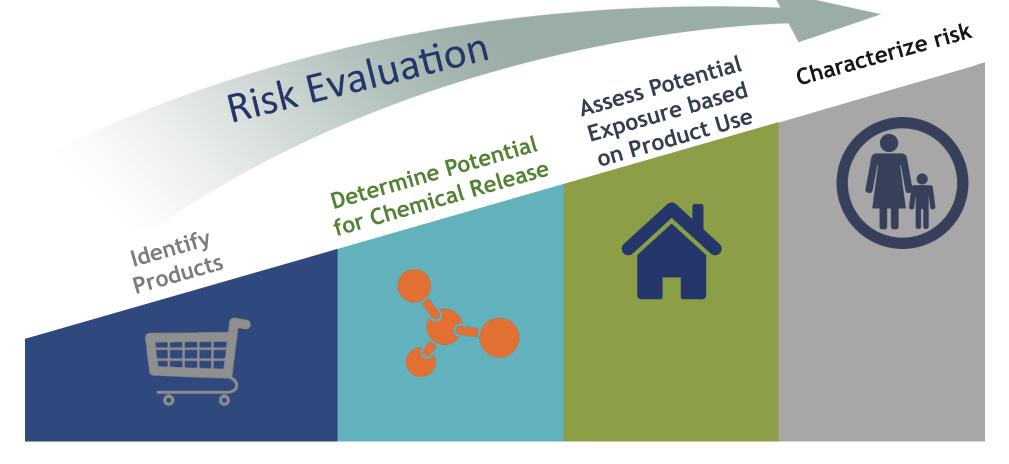
Potential Users

Material Resource Credits

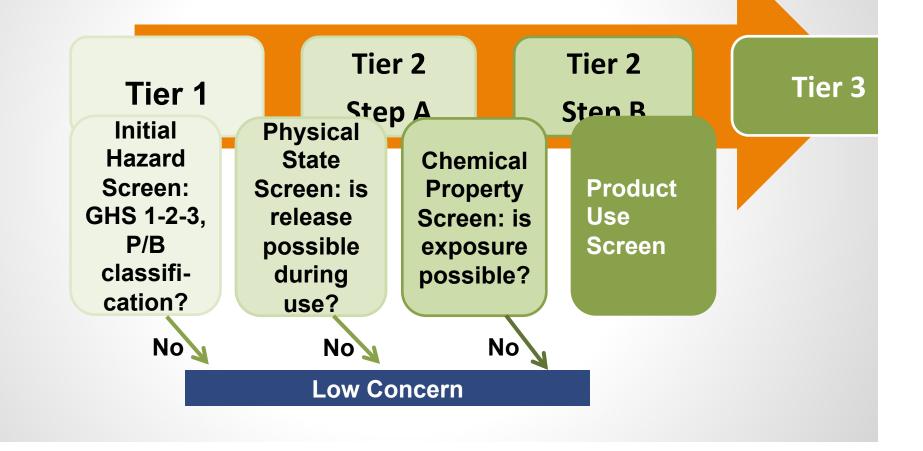
Human Health	
Envir'l Impacts	
Safety	

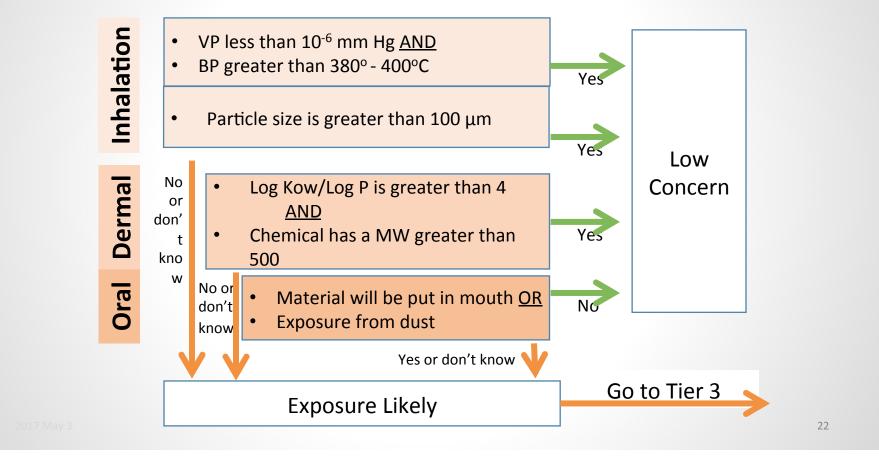
Tool Providers

e.g., toxnot, UL, SciVera, CPA, Verisk 3E


~ -
~ —

Education / Communication


- Make MCDA Operational
- Assess Trade-Offs
- Identify Data Sources
- Solutions for Data Gaps


Is There Potential for Release and Exposure?

Tiered Screening for Chemical Exposures

Tier 2 Step B – Chemical Property Screen

Tier 3 - Exposure Subscore

Define Exposure Scenario: • Product • Chemical • Route	Exposure criteria/Score	1	2	3	4	Score
	User-direct exposure	Professional	Adult	Teen	Child/sensitive population	1 to 4
		I Solid I	Gel/paste (from container)	Liquid (poured, mixed,	Aerosol Pressurized container	1 to 4
• User	Product form during use			rolled on) Pump (non-aerosol)	Pump (unpressurized container)	
					Powder (crystals, granules)	
	Concentratio n in product	Less than 0.1%	0.1-1%	1-10%	10-100%	1 to 4
	Frequency of use	Annually or less	Monthly	Weekly	Daily	1 to 4
	Duration of use	<1 minute	1-60 minutes	1-8 hours	8-24 hours	1 to 4
					Exposure Score	5 to 20

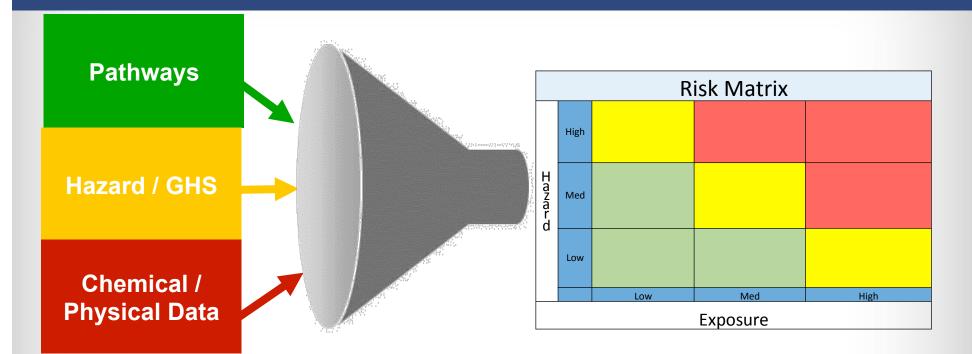
Hazard + Exposure Scoring

	Hazard	Exposure Sub-score		
	Sub-score	Low [1] (5 – 9)	Med [2] (10-15)	High [3] (16-20)
Not Carcinogen/mutagen/repro/develop (CMR); AND No GHS classification for Repeat dose; AND No GHS classification for eye/skin irritation; AND Not P or B	Low [1]	2	3	4
Not CMR; AND Repeat dose GHS Cat 3; AND No GHS classification for eye/skin irritation; AND Not P or B	Medium [2]	3	4	5
CMR GHS Cat 2; OR Repeat dose GHS Cat 2; OR Eye Damage/Skin Corrosion GHS Cat 2; OR Respiratory Sensitization GHS Cat 2; OR P and not B; OR B and not P	Medium-High [3]	4	5	6
CMR GHS Cat 1A, 1B; OR Repeat dose GHS Cat 1; OR Eye Damage/Skin Corrosion GHS Cat 1; OR Respiratory Sensitization GHS Cat 1A or 1B; OR	High [4]	5	6	7

Pilot Study Key Findings

Easily implemented

Produces a concise and transparent stepwise framework


Uses publicly available data

Documents key decisions and inputs

Provides a powerful tool for communicating screening findings to formulators, manufacturers, and stakeholders

Phase 2 Pilot Study

Green: Considered low risk

Yellow: May require further information from the manufacturer or formulator to determine if more detailed risk assessment information can be provided

Red: May require a more rigorous risk assessment; may indicate data gaps; may lead to AA

Questions?

